Acta Crystallographica Section C
Crystal Structure

Communications

ISSN 0108-2701

Dicarbonyldi- μ-chloro-cis,cis- $\boldsymbol{\eta}^{4}$-1,5cyclooctadienedirhodium(I)

Maurice Abou Rida, ${ }^{\text {a }}$ Joseph Saikaili, ${ }^{\text {b }}$ Anthony K. Smith ${ }^{\mathbf{a} *}$ and Alain Thozet ${ }^{\text {c }}$

${ }^{\text {a }}$ Laboratoire de Chimie Organométallique de Surface, CNRS UMR 9986, Ecole Supérieure de Chimie Physique Electronique de Lyon, 43 Boulevard du 11 Novembre 1918, F-69616 Villeurbanne CEDEX, France, ${ }^{\text {b }}$ Faculty of Science II, Lebanese University, Fanar Beirut, Lebanon, and ${ }^{\text {c }}$ Laboratoire de Cristallographie, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918,
F-69622 Villeurbanne CEDEX, France
Correspondence e-mail: smith@cpe.fr
Received 6 October 2000
Accepted 11 December 2000
The title compound, dicarbonyl- $1 \kappa^{2} \mathrm{C}$-di- μ-chloro- $1: 2 \kappa^{4} \mathrm{Cl}$ - $[$ cis,-cis- $2\left(\eta^{4}\right)$-1,5-cyclooctadiene $]$ dirhodium $(\mathrm{I}), \quad\left[\mathrm{Rh}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\right.$ $(\mathrm{CO})_{2}$], consists of a dichloro-bridged dimer of rhodium, with a non-bonded Rh \cdots Rh distance of 3.284 (2) \AA. One Rh atom is coordinated to two carbonyl ligands, while the other Rh atom is coordinated to the cyclooctadiene moiety.

Comment

The crystal structures of the compounds $\left[\mathrm{Rh}_{2} \mathrm{Cl}_{2}(\mathrm{CO})_{4}\right]$ (Dahl et al., 1961; Walz \& Scheer, 1991) and $\left[\mathrm{Rh}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)_{2}\right]$ (Ibers \& Snyder, 1962; Boeyens et al., 1986; De Ridder \& Imhoff, 1994) have been reported. However, the structure of the mixed-ligand rhodium dimer, with two carbonyl ligands coordinated to one Rh atom and a cyclooctadiene ligand coordinated to the other Rh atom, i.e. (I), has only been determined by X-ray powder diffraction (Corradi et al., 1997).

(I)

The structure of (I) (Fig. 1) consists of two square-planar Rh atoms linked by two bridging Cl atoms. The bond lengths and angles of the Rh1 moiety are very similar to those found in the $\left[\mathrm{Rh}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)_{2}\right]$ molecule, while those of the Rh2 moiety are similar to those found in the $\left[\mathrm{Rh}_{2} \mathrm{Cl}_{2}(\mathrm{CO})_{4}\right]$ molecule. This is particularly remarkable with regard to the different $\mathrm{Rh}-\mathrm{Cl}$ bond lengths. Thus, Rh1 - Cl1 of 2.406 (2) \AA and $\mathrm{Rh} 1-\mathrm{Cl} 2$ of 2.412 (2) \AA correspond to the equivalent bond lengths found in $\left[\mathrm{Rh}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)_{2}\right]$ (average $2.410 \AA$; De Ridder \& Imhoff, 1994), while the shorter bond lengths, $\mathrm{Rh} 2-\mathrm{Cl} 1$ of 2.371 (2) \AA and $\mathrm{Rh} 2-\mathrm{Cl} 2$ of 2.372 (2) \AA, correspond to the equivalent bond lengths found in $\left[\mathrm{Rh}_{2} \mathrm{Cl}_{2}(\mathrm{CO})_{4}\right]$ (average 2.384 A ; Walz \& Scheer, 1991). As expected also, the Rh‥Rh distance in
the title compound [3.284 (2) \AA] approximates to the average of the corresponding values for $\left[\mathrm{Rh}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)_{2}\right][3.509(1) \AA$; Boeyens et al., 1986] and $\left[\mathrm{Rh}_{2} \mathrm{Cl}_{2}(\mathrm{CO})_{4}\right][3.138$ (1) \AA; Walz \& Scheer, 1991]. The dihedral angle about the $\mathrm{Cl} \cdots \mathrm{Cl}$ vector of the $\mathrm{Rh}_{2} \mathrm{Cl}_{2}$ core is 139.6°, somewhat larger than that of $\left[\mathrm{Rh}_{2} \mathrm{Cl}_{2}(\mathrm{CO})_{4}\right]\left(128.6^{\circ}\right.$; Dahl et al., 1961; Walz \& Scheer, 1991), but markedly different from the planar $\mathrm{Rh}_{2} \mathrm{Cl}_{2}$ core in $\left[\mathrm{Rh}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)_{2}\right]$ (Ibers \& Snyder, 1962; Boeyens et al., 1986; De Ridder \& Imhoff, 1994). There are relatively short $\mathrm{Rh} \cdots \mathrm{Rh}$ intermolecular contacts ($\mathrm{Rh} 2 \cdots \mathrm{Rh} 2^{\prime} 3.50 \AA$) between the Rh atoms bearing the carbonyl ligands. The structure obtained from powder diffraction methods (Corradi et al., 1997) showed a rather short packing contact between O1 and $\mathrm{O}^{\prime}[2.67$ (6) Å] which was recognized to be susceptible to small structural changes. The present data show this contact to be much longer at $3.19 \AA$, otherwise there are no major differences in the structural parameters.

Figure 1
The molecular structure of the title compound with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.

Experimental

The title compound was extracted as a minor product from the solution resulting from the reaction between $\left[\mathrm{RuCl}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\right.$] and $\left[\mathrm{Rh}_{2} \mathrm{Cl}_{2}(\mathrm{CO})_{4}\right]$. Orange crystals were grown from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane solution.

Crystal data

$\left[\mathrm{Rh}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)(\mathrm{CO})_{2}\right]$
$D_{x}=2.238 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=440.92$
Monoclinic, $P 2_{1} / c$
$a=6.6500$ (12) \AA
$b=12.261$ (3) \AA
$c=16.058(3) \AA$
$\beta=92.19$ (3) ${ }^{\circ}$
$V=1308.3(5) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
Cell parameters from 15389 reflections
$\theta=2.09-30.02^{\circ}$
$\mu=2.912 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, orange
$0.15 \times 0.10 \times 0.10 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer
$\theta_{\text {min }}=2.09^{\circ}$
Area-detector scans
15389 measured reflections
3699 independent reflections
$\theta_{\text {max }}=30.02^{\circ}$
$h=0 \rightarrow 9$
$k=0 \rightarrow 17$
$l=-22 \rightarrow 22$
$R_{\text {int }}=15389$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.067$
$w R\left(F^{2}\right)=0.196$
$S=1.118$
3699 reflections
145 parameters

H atoms constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=1.01 \mathrm{e}^{\text {max }} \AA^{-3}$
$\Delta \rho_{\min }=-1.28 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

Rh1-C1	$2.099(8)$	O2-C10	$1.125(10)$
Rh1-C4	$2.118(7)$	O1-C9	$1.121(10)$
Rh1-C5	$2.094(7)$	$\mathrm{C} 1-\mathrm{C} 8$	$1.395(14)$
Rh1-C8	$2.101(8)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.516(12)$
Rh1-Cl1	$2.406(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.476(12)$
Rh1-Cl2	$2.412(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.512(12)$
Rh2-C9	$1.844(9)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.365(11)$
Rh2-C10	$1.850(9)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.493(13)$
Rh2-Cl1	$2.371(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.487(13)$
Rh2-Cl2	$2.372(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.504(14)$
$\mathrm{Cl} 1-\mathrm{Rh} 1-\mathrm{Cl} 2$	$85.03(8)$	$\mathrm{C} 10-\mathrm{Rh} 2-\mathrm{Cl} 2$	$91.3(3)$
$\mathrm{C} 9-\mathrm{Rh} 2-\mathrm{C} 10$	$91.4(4)$	$\mathrm{Cl} 1-\mathrm{Rh} 2-\mathrm{Cl} 2$	$86.71(8)$
C9-Rh2-Cl1	$90.5(3)$	$\mathrm{Rh} 2-\mathrm{Cl} 1-\mathrm{Rh} 1$	$86.88(8)$
C10-Rh2-Cl1	$176.7(3)$	$\mathrm{Rh} 2-\mathrm{Cl} 2-\mathrm{Rh} 1$	$86.71(7)$
C9-Rh2-Cl2	$176.8(3)$		

H atoms were constrained during the refinement with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA$.

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski \& Minor, 1997); data reduction: DENZO;
program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990); software used to prepare material for publication: SHELXCIF-97 (Sheldrick, 1997).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1124). Services for accessing these data are described at the back of the journal.

References

Boeyens, J. C. A., Denner, L., Orchard, S. W., Rencken, I. \& Rose, B. G. (1986). S. Afr. J. Chem. 39, 229-232.

Corradi, E., Masciocchi, N., Palyi, G., Ugo, R., Vizi-Orosz, A., Zucchi, C. \& Sironi, A. (1997). J. Chem. Soc. Dalton Trans. pp. 4651-4655.
Dahl, L. F., Martell, C. \& Wampler, D. L. (1961). J. Am. Chem. Soc. 83, 17611762.

De Ridder, D. J. A. \& Imhoff, P. (1994). Acta Cryst. C50, 1569-1572.
Ibers, J. A. \& Snyder, R. G. (1962). Acta Cryst. 15, 923-930.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326.
Sheldrick, G. M. (1997). SHELXL97, SHELXS97 and SHELXCIF-97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Walz, L. \& Scheer, P. (1991). Acta Cryst. C47, 640-641.

